MG811 CO2 Sensor

Features

Good sensitivity and selectivity to CO2
Low humidity and temperature dependency
Long stability and reproducibility

Application

Air Quality Control
Ferment Process Control
Room Temperature CO2 concentration Detection

Structure and Testing Circuit

Sensor Structure and Testing Circuit as Figure 1A, It composed by solid electrolyte layer (1), gold electrodes (2), platinum lead (3), heater (4), porcelain tube (5), 100m double-layer stainless net (6), nickel and copper plated ring (7), bakelite (8), nickel and copper plated pin (9).

Working Principle

Sensor adopt solid electrolyte cell principle. It is composed by the following solid cells:

Air | Au| NASICON| carbonate| Au, air | CO2

When the sensor exposed to CO2, the following electrodes reaction occurs:

Cathodic reaction: 2Li^+ + CO2 + 1/2O2 + 2e^- = Li2CO3
Anodic reaction: 2Na^+ + 1/2O2 + 2e^- = Na2O

Overall chemical reaction: Li2CO3 + 2Na^+ = Na2O + 2Li^+ + CO2

The Electromotive force (EMF) result from the above electrode reaction, accord with according to Nernst’s equation:

EMF = Ec - (R x T) / (2F) ln (P(CO2))

P(CO2) — CO2 partial Pressure, Ec—Constant Volume, R—Gas Constant volume, T—Absolute Temperature, F—Faraday constant

From Figure 1B, Sensor Heating voltage supplied from other circuit, When its surface temperature is high enough, the sensor equals to a cell, its two sides would output voltage signal, and its result accord with Nernst’s equation. In sensor testing, the impedance of amplifier should be within 100—1000Ω, its testing current should be control below 1pA.
Specifications

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter Name</th>
<th>Technical</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_H</td>
<td>Heating Voltage</td>
<td>6.0±0.1 V AC or DC</td>
<td></td>
</tr>
<tr>
<td>R_H</td>
<td>Heating Resistor</td>
<td>30.0±5% Ω</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>I_H</td>
<td>Heating Current</td>
<td>@200mA</td>
<td></td>
</tr>
<tr>
<td>P_H</td>
<td>Heating Power</td>
<td>@1200mW</td>
<td></td>
</tr>
<tr>
<td>Tao</td>
<td>Operating Temperature</td>
<td>-20—-50</td>
<td></td>
</tr>
<tr>
<td>Tas</td>
<td>Storage Temperature</td>
<td>-20—-70</td>
<td></td>
</tr>
<tr>
<td>EMF</td>
<td>Output</td>
<td>30—50mV</td>
<td>350—10000ppmCO2</td>
</tr>
</tbody>
</table>

Sensitivity

Figure 2 Shows gas sensor sensitivity curve. Conditions:
- Temperature: 28°C
- Humidity: 65%
- Oxygen: 21%
- EMF: sensor EMF under different gas and concentration.

Response and Resume Characteristic

Figure 3 shows Solid electrolyte sensor response and resume characteristics.

Temperature and Humidity Dependency